Glutamate carboxypeptidase II inhibition protects motor neurons from death in familial amyotrophic lateral sclerosis models.

نویسندگان

  • Ghanashyam D Ghadge
  • Barbara S Slusher
  • Amos Bodner
  • Mauro Dal Canto
  • Krystyna Wozniak
  • Ajit G Thomas
  • Camilo Rojas
  • Takashi Tsukamoto
  • Pavel Majer
  • Richard J Miller
  • Anna Liza Monti
  • Raymond P Roos
چکیده

Approximately 10% of cases of amyotrophic lateral sclerosis (ALS), a progressive and fatal degeneration that targets motor neurons (MNs), are inherited, and approximately 20% of these cases of familial ALS (FALS) are caused by mutations of copper/zinc superoxide dismutase type 1. Glutamate excitotoxicity has been implicated as a mechanism of MN death in both ALS and FALS. In this study, we tested whether a neuroprotective strategy involving potent and selective inhibitors of glutamate carboxypeptidase II (GCPII), which converts the abundant neuropeptide N-acetylaspartylglutamate to glutamate, could protect MNs in an in vitro and animal model of FALS. Data suggest that the GCPII inhibitors prevented MN cell death in both of these systems because of the resultant decrease in glutamate levels. GCPII inhibition may represent a new therapeutic target for the treatment of ALS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Retinoid signaling alterations in amyotrophic lateral sclerosis.

Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular disease for which effective therapeutic interventions and an understanding of underlying disease mechanism are lacking. A variety of biochemical pathways are believed to contribute to the pathophysiology of ALS that are common to both sporadic and familial forms of the disease. Evidence from both human and animal studies indicates tha...

متن کامل

Chronic inhibition of superoxide dismutase produces apoptotic death of spinal neurons.

Mutations in the gene for Cu/Zn superoxide dismutase (SOD1) have been detected in some families with an autosomal dominant form of amyotrophic lateral sclerosis; these mutations appear to reduce the activity of this enzyme. To determine whether decreased SOD activity could contribute to motor neuron loss, SOD1 was inhibited chronically with either antisense oligodeoxynucleotides or diethyldithi...

متن کامل

Identification of candidate drugs for the treatment of ALS.

A consortium of investigators interested in neurodegenerative diseases collaborated to screen 1040 drugs in multiple neurodegenerative disease assays. One model of amyotrophic lateral sclerosis (ALS) pathogenesis in particular incorporated glutamate exposure in enriched primary rat motor neuron cultures. In this model 78 compounds decreased motor neuron death caused by 100 microM glutamate. Alm...

متن کامل

Current hypotheses for the underlying biology of amyotrophic lateral sclerosis.

The mechanisms involved in selective motor neuron degeneration in amyotrophic lateral sclerosis remain unknown more than 135 years after the disease was first described. Although most cases have no known cause, mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1) have been implicated in a fraction of familial cases of the disease. Transgenic mouse models with mutations in the SOD1 g...

متن کامل

System xC- is a mediator of microglial function and its deletion slows symptoms in amyotrophic lateral sclerosis mice.

Amyotrophic lateral sclerosis is the most common adult-onset motor neuron disease and evidence from mice expressing amyotrophic lateral sclerosis-causing SOD1 mutations suggest that neurodegeneration is a non-cell autonomous process where microglial cells influence disease progression. However, microglial-derived neurotoxic factors still remain largely unidentified in amyotrophic lateral sclero...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 100 16  شماره 

صفحات  -

تاریخ انتشار 2003